TORQUE & TENSION CONTROLS

www.redex-group.com

EMP Brakes & Clutches,
Torque limiters,
Controllers,
Load cells & Torque sensors

MEROBEL: A BRAND OF REDEX GROUP...

A European Group, a Global presence

Structured as an **European and international company** (selling its products to over 50 countries), REDEX Group global organization includes:

- 3 service centers.
- · 8 subsidiaries,
- and a large network of specialized agents to offer its customers and partners service and support all around the world

REDEX Group European orientation has been further strengthened by the integration over the past 10 years of BÜHLER GmbH, UNGERER GmbH & BWG technologies.

With more than **160 years of combined expertise** in its core specialties, REDEX Group carries off 30 active patents and dedicate an average of 8% of its turnover to **innovation and R&D**.

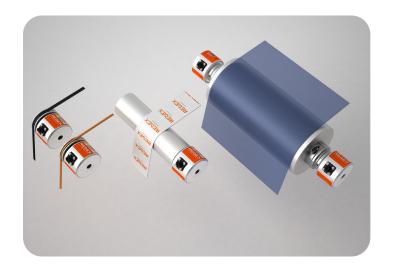
Focused on industrial B2B, its global organization relies on European top management and teams to offer the best services in design, manufacturing, sales & technical support.

REDEX Group is specialized in supplying advanced solutions for high precision industries, REDEX Group is a technical leader in each of its high demanding specialties: **Machine Drives, Precision Rolling Mills and Strip Processing Technologies**.

... AND A WORLD LEADER IN ITS KNOWHOW

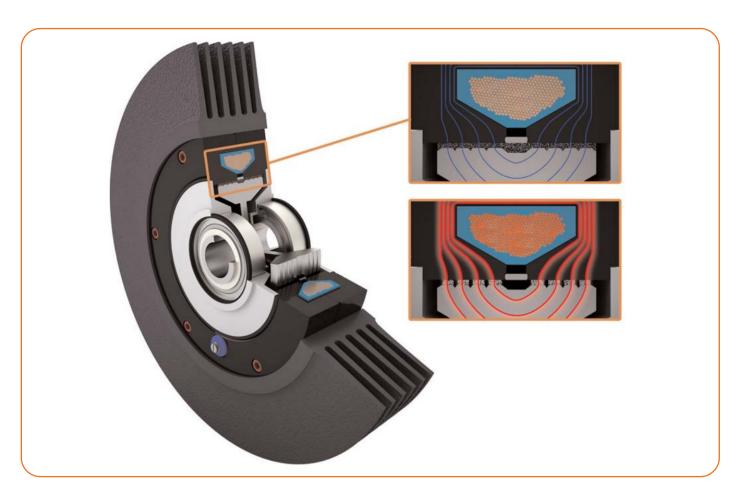
Torque & Tension Control

As a well known supplier of EMP brakes and clutches for many years, with the MEROBEL Torque & Tension brand, REDEX Group gained a vast field of experience for unwind / intermediate / rewind industrial applications for papers, foils, fibers, wire and cable.


Using this experience, engineering team developed a range of controllers that meet all the needs of torque and tension applications.

Always focussed to develop easy and user friendly solutions, controllers are designed with USB port and free software to ease the setting up and commissioning. Connection with the automation world (HMI, PLC) is accessible thanks to open communication with the ethernet port.

With the addition of the load cells, torque sensors and sensors, complete tension control solution are offered in many different industries such as:


- · Converting,
- · Printing,
- Packaging,
- · Composites,
- · Wire & Cable,

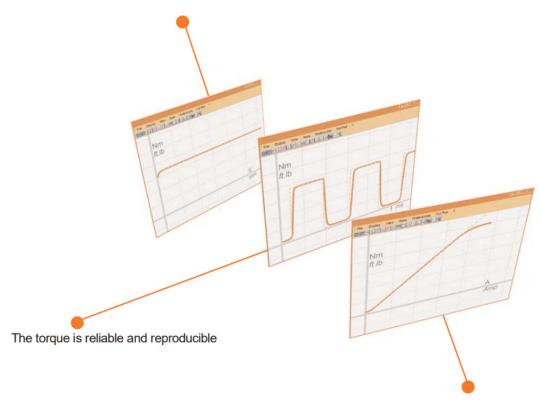
but also for torque cycles simulation in test bench (motors, gearboxes, actuators, mechanical parts).

EMP TECHNOLOGY

PRINCIPLE

The EMP powder reacts to the variation of a magnetic field generated by an electro-magnetic coil.

Varying the powder's "viscosity" leads to the control of the torque transmission between the primary and the secondary rotors.


When the secondary rotor is fixed to the equipment frame, the device is acting as a brake, otherwise it's acting as a clutch.

EMP TECHNOLOGY

OFFERING THE BEST TORQUE CONTROL QUALITY

The torque is independent of slip speed.

The torque variation is linear and proportional to the electric current.

ADDITIONAL BENEFITS

- WIDE TORQUE RANGE
- ELECTRIC LOW POWER CONSUMPTION
- EASY INSTALLATION

- ABILITY TO WORK IN BOTH DIRECTION (CW- CCW)
- CLEAN TECHNOLOGY: NO DUST EMISSION
- SILENT

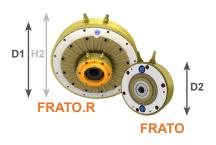
Through bore Brakes

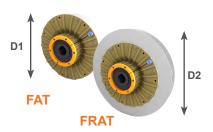
The most popular range of MEROBEL's EMP Brakes, offering tailored solutions for every need with:

- 10 sizes
- up to 5 different versions for each size (heat dissipation options).

Especially designed to be easily installed on Converting, Printing, Wire & Cable, and Packaging machines to name a few.

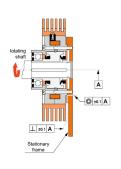
Cost effective solution for variable torque simulation systems (automotive and aeronautics test benches).


	FAT	FRAT		rque lm)	Coil	Nominal current	Rotor Inertia	Max speed			dissipatio (W)	on
Size	Refe	rence	Min	Max	Ohm	Amp	kg.mm²	rpm	FAT	FRAT	FVAT	FVRAT
FAT 20 FAT 20.RR	ME314320-00 ME314370-00	ME314325-00 ME314360-00	0.04 0.08	2	24	0.4	16	3000	40	60	X	Х
FAT 50 FAT 50.RR	ME313920-00 ME313927-00	ME313920-00 ME313927-00	0.2 0.4	5	24	0.5	99	3000	70	100	X	Χ
FAT 120 FAT 120.RR	ME321300-00 ME321330-00	ME321400-00 ME321440-00	0.27 0.56	12	23	0.55	250	3000	75	150	X	650
FAT 350 FAT 350.RR	ME321700-00 ME321730-00	ME321800-00 ME321801-00	0.33 0.66	35	19	1	790	3000	100	210	500	1400
FAT 650 FAT 650.RR	ME322100-00 ME322110-00	ME322200-00 ME322230-00	0.63 1.3	65	20	1	2k	3000	150	350	700	1800
FAT 1200 FAT 1200.RR	ME317400-00 ME317430-00	ME322600-00 ME322620-00	1.2 2.4	120	12.5	1.1	26.5k	2000	300	550	1400	2000
FAT 2002 FAT 2002.RR	ME330200-00 ME330201-00	ME330210-00 ME330211-00	2 4	200	11	1.55	35.2k	2000	400	700	1800	2000
FAT 3500 FAT 3500.RR	ME126170-00 ME127679-00	ME126338-00 ME128507-00	3.5 7	350	10	1.5	89k	2000	470	950	X	3300

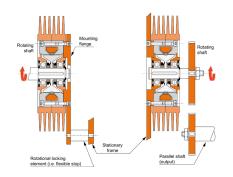

Ø ext	FAT20	FAT50	FAT120	FAT350	FAT650	FAT1200	FAT2002	FAT3500
D1 (mm)	70	93	114.5	135.5	157.5	252.5	278	315
D2 (mm)	110	140	198	238	278	390	390	500

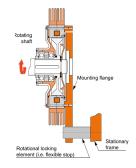
Through bore Water Cooled and "High Torque" Brakes

Ø ext	FRATO650	FRATO2002	FRATO5001	FRATO10001
D1 (mm)	175	306	457	570
H2 (mm)	208	339	490	603



Ø ext	FRAT5001	FRAT10001
D1 (mm)	430	550
D2 (mm)	600	720


Watcer cooled & big brakes						
Reference						
FRATO 650	ME322500-00					
FRATO 2002	ME330240-00					
FAT 5001	ME330900-00					
FRAT 5001	ME330910-00					
FRATO 5001	ME330940-00					
FRATO 5001R	ME330950-00					
FAT 10001	ME331200-00					
FRAT 10001	ME331210-00					
FRATO 10001	ME331240-00					
FRATO 10001R	ME331250-00					


Torqu	ıe (Nm)	Coil	Nom current	Rotor Inertia	Max speed	Power dissipation
Min	Max	Ohm	Amp	kg.mm²	rpm	w
65	65	19	1	790	3000	2000
200	200	11	1.55	35.2	2000	2500
						1000
500	500	500 11	1.7	331k	1500	1800 (4500)*
300	300	11	1.7	33 IK		4500
						8000
						1700
1000	1000	20	17	9001	1000	3000 (7000)*
1000	1000 20 1.7 809k	009K	1000	5000		
						10000

*FVRAT air cooled solution

Through bore Clutches

MEROBEL's EMP Clutch series are dedicated to applications where speed and torque need to be independently controlled (a solution which cannot be achieved with a single motor).

Built by adding slip rings and brushes to the through bore brakes, this range of device offers two different heat dissipation versions for each size (without or with cooling fins).

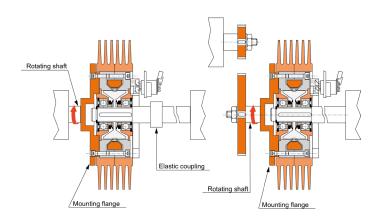
	EAT	ERAT	Torqu	ıe (Nm)	Coil	Nom current	Rotor Inertia	Max speed	Power dis	sipation (W)
Size	Refe	rence	Min	Max	Ohm	Amp	kg.mm²	rpm	EAT*	ERAT*
EAT 20 EAT 20.RR	ME314330-00 ME314360-00	ME314335-00	0.04	2	24	0.4	16	3000	125 @2000rpm	180 @2000rpm
EAT 50 EAT 50.RR	ME313930-00 ME313932-00	ME313935-00 ME129790-00	0.2 0.4	5	24	0.5	99	3000	165 @2000rpm	360 @2000rpm
EAT 120 EAT 120.RR	ME321500-00 ME321340-00	ME321600-00 ME321620-00	0.27 0.56	12	23	0.55	250	3000	310 @2000rpm	1050 @2000rpm
EAT 350 EAT 350.RR	ME321900-00 ME321740-00	ME322000-00 ME322001-00	0.33 0.66	35	19	1	790	3000	400 @2000rpm	1450 @2000rpm
EAT 650 EAT 650.RR	ME322300-00 ME322340-00	ME322400-00 ME322350-00	0.63 1.3	65	20	1	2k	3000	650 @2000rpm	2250 @2000rpm
EAT 1200 EAT 1200.RR	ME317410-00 ME317450-00	ME322800-00 ME322801-00	1.2 2.4	120	12.5	1.1	26.5k	2000	975 @1050rpm	2100 @1050rpm
EAT 2002 EAT 2002.RR	ME330220-00 ME330223-00	ME330230-00 ME330225-00	2 4	200	11	1.55	35.2k	2000	1000 @1050rpm	2500 @1050rpm
EAT 3500 EAT 3500.RR	ME126445-00 ME129863-00	ME126454-00 ME132209-00	3.5 7	350	10	1.5	89k	2000	1250 @1050rpm	3300 @1050rpm

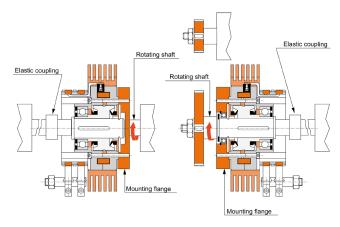
* external rotor rotating @ max rpm



Ø ext	EAT20	EAT50	EAT120	EAT350	EAT650	EAT1200	EAT2002	EAT3500
D1 (mm)	70	93	114.5	135.5	157.5	252.5	278	315
D2 (mm)	110	140	198	238	278	390	390	500

Through bore High Torque Clutches



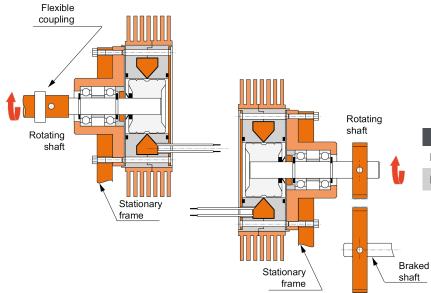

Ø ext	EAT5001	EAT10001
D1 (mm)	430	550
D2 (mm)	600	720

Big brakes					
Reference					
EAT 5001	ME330920-00				
ERAT 5001	ME330930-00				
EAT 10001	ME331220-00				
ERAT 10001	ME331230-00				

Torqu	ıe (Nm)	Coil	Nom current Rotor Inertia		Max speed	Power dissipation	
Min	Max	Ohm	Amp	kg.mm²	rpm	w	
500	500	11	1.7	331k	1500	1600 @1000rpm	
300	300	300	11	1.7	33 IK	1500	3000 @700rpm
1000	1000	20	1.7	809k	1000	2100 @500rpm	
1000	1000	20	1.7	009K	1000	3500 @350rpm	

^{*} external rotor rotating @ max rpm

Output shaft Brakes



Compact and very easy to use for applying a variable torque to a rotational system, such as a bobbin directly attached to a shaft, or a small motorized device to be loaded.

MEROBEL's EMP output shaft series are typically used in industrial applications such as wire and cable tension control systems, narrow ribbon unwinding processes, small device automatic test rigs, and more...

	FAS	FRAS
External shaft	Refer	ence
FAS 2 M	ME337800-00	ME337801-00
FAS 21 M	ME339000-00	ME339100-00
FAS 50 M	ME338200-00	ME338250-00

Torqu	e (Nm)	Coil	Nom current	Rotor Inertia	Max speed	Power diss	ipation (W)
Min	Max	Ohm	Amp	kg.mm²	rpm	FAS	FRAS
0.2	0.2	195	0.05	0.8	3000	15	25
2	2	31	0.45	35	3000	35	60
5	5	24	0.52	44.5	3000	50	85

Ø ext	FAS2M	FAS21M	FAS50M
D1 (mm)	45	135.5	157.5
D2 (mm)	75	238	278

Brushless Clutches

The fixed coil design offers very easy mechanical integration into machine designs.

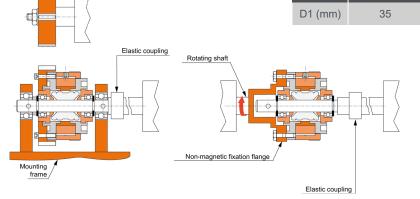
These devices are particularly useful when speed and torque need to be independently controlled at the same time.

	EFAS
External shaft	Reference
EFAS 2	ME323400-00
EFAS 10	ME3233501-00
EFAS 17	ME323601-00
EFAS 50	ME321201-00

Torqu	ie (Nm)	Coil	Nom current	Inertia	Max speed	Power dissipation
Min	Max	Ohm	Amp	kg.mm²	rpm	W
0.2	0.2	82	0.21	0.8	3000	12
1	1	54.4	0.48	25	3000	20
1.7	1.7	37	0.57	7.8	3000	30
5	5	24	0.65	37	3000	50

Ø ext	EFAS2	EFAS10	EFAS17	EFAS50
D1 (mm)	37	52	60	80

Torque limiters



Compact and very easy to use for applying a variable torque to a rotational system, such as a bobbin directly attached to a shaft, or a small motorized device to be loaded.

MEROBEL's EMP output shaft series are typically used in industrial applications such as wire and cable tension control systems, narrow ribbon unwinding processes, small actuator or motor test rigs, and more...

Torque Limiters	Reference
LC 0	ME807326-01
LC 1	ME807326-02
LC 3	ME807326-03
LC 10	ME807341-01
LC 20	ME807341-02
LC 50	ME807355-01
LC 100	ME807355-02
LC 150	ME806208-01
LC 300	ME806208-02
LC 500	ME806208-03
LC 700	ME806208-04

Torque (Nm)		Int. rotor Inertia	Ext. rotor Inertia	Power dissipation
Min	Max	kg.mm²	kg.mm²	W
0.02	0.06	0.59	16	8
0.05	0.15	0.59	16	8
0.12	0.3	0.59	16	8
0.3	1	29	390	25
0.6	2	29	390	25
2	6	210	600	75
4	12	210	600	75
5	15	23k	120k	500
15	40	23k	120k	500
25	65	23k	120k	500
30	85	23k	120k	500

LC10-20

62

LC0-1-3

Ø ext

LC50-100

110

LC150-300-500-700

260

LC10-20

LC-50-100

LC-0-1-3

LC150-700

Torque & Tension


Especially designed for capping application, LC.CS series benefits of the reinforced sealing (*) & corrosion protection surface treatment. Capping head or coupling can be directly mounted on the fixing nozzle, with a compressed air supply enable through the hollow shaft.

Smooth and stepless transmission is guarantee in any mounting position.

 $(\mbox{\ensuremath{^{*}}})$: high pressure wash down is not compatible with the technology

Torque Limiters	Reference
LC 10CS	ME807341-14
LC 20CS	ME807341-13
LC 30CS	ME807341-15

Torque (Nm)		Int. rotor Inertia	Ext. rotor Inertia	Power dissipation	
Min	Max	kg.mm²	kg.mm²	W	
0.3	1	29	390	25	
0.6	2	29	390	25	
1.2	2.4	29	390	25	

Ø ext	LC10CS-20CS-30CS
D1 (mm)	62

APPLICATIONS

WEB TENSION CONTROL

Foil unwinding

MEROBEL solutions offer the best cost to performance ratio with the simplest installation and setup procedures.

Using MEROBEL solutions provides real advantages when tension accuracy is crucial for web unwinding and rewinding applications.

Converting, Printing, Labelling, Packaging, Textile, Composites, battery, etc.

WIRE & CABLE TENSION

Filament unwinding

MEROBEL's EMP technology is the modern solution for unwind stand, flyer, or wire tensioner, to ensure accurate tension control in the Wire & Cable industries.

Wire and Cable industry,
Coil and Filaments
Winding, High Tech
Textile, Tires, etc.

APPLICATIONS

TEST BENCHES

Smooth variation and quick response time make MEROBEL EMP brakes the ideal technology to create closed loop controlled simulation of variable torque on industrial test rigs.

High reliability and compact design are just a few of the advantages offered for this type of application.

Converting, Printing, Labelling, Packaging, Textile, Composites,

ACCURATE TORQUE CONTROL

Smooth and progressive variation of the torque, accuracy and compactness, low power consumption, and long life without maintenance, are some of the most important features which make MEROBEL EMP Brakes essential wherever accurate torque control is required.

Packaging, precision screw tightening, capping, accurate torque limitation, simulators and all other demanding industries.

SELECTION & SIZING

SIZING

Like any technical product, MEROBEL EMP Brakes & Clutches must be properly sized to achieve outstanding durability without maintenance.

TORQUE

The sizing is primarily achieved by comparison of the required torque to the rated torque ranges.

$$T_{max}$$
 [Nm] = F_{max} [N] . R_{max} [m] T_{min} [Nm] = F_{min} [N] . R_{min} [m]

Note : mechanical Inertia effects may have to be considered when evaluating the max torque

POWER DISSIPATION

Brakes and Clutches create heat. The amount of the heat created must be compared to the power dissipation capability of the unit to ensure that the maximum operating temperature is not exceeded.

P[W] = T [Nm] .ω [rd/s]with ω = π . n [rpm] / 30

Note 1: a gear ratio should be considered to avoid oversizing the unit when the maximum torque becomes the primary selection parameter.

Note 2: the max. power shown on the device specification sheet is given for an ambient temperature of 20°C. For higher ambiet temperatures, the power dissipation should be reduced accordingly.

ROTATION SPEED

The maximum rotating speed is mechanically limited (unbalanced effects, centrifugal force, and ball bearing sizing).

The minimum speed is given to avoid any possible "clogging" effect when there is compliance in the transmission system.

 \mathbf{n}_{max} and \mathbf{n}_{min} [rpm] are shown on the devices specification sheets.

Note: when the required speed is lower than the minimum speed shown on the specification sheet, the remnant rotor version (RR) can be possible solution. Many parameters may allow lower and higher speeds to be acceptable.

When facing these limitations, please consult your local supplier.

Specific formulas to be used for unwind / rewind applications are given in the Tension Control chapter (see p 16).

SELECTION & RECOMMENDATION

MOUNTING POSITION

EMP Brakes and Clutches are primarily designed to be installed with the shaft horizontal.

However, the vertical shaft position is possible by using a remnant rotor version or keeping a small current permantently applied to the coil. If facing this type of application, please consult your local supplier.

AXIAL & RADIAL FORCES

Internal ball bearings are designed to support only the weight of Brakes/Clutches rotating parts.

Any extra force (i.e. : high load on the shaft) has to be managed by an external mechanical assembly.

MAINTENANCE - LUBRICATION

The ball bearings of the EMP Brakes and Clutches are lubricated with high temperature grease for life.

The EMP Brakes and Clutches are maintenance free for years when sized correctly and used under normal conditions.

Never Insert or spray any oil or grease inside or onto the devices, as it may seriously affect their performance.

TEMPERATURE

External temperature of the devices is determined by the addition of the ambient temperature plus the temperature rise created by its operation (related to the braking principle which converts the mechanical power into thermal power).

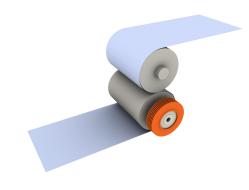
MEROBEL's EMP Brakes & Clutches exclusive design allows an external temperature up to 100°C, without jeopardizing the performance or lifetime.

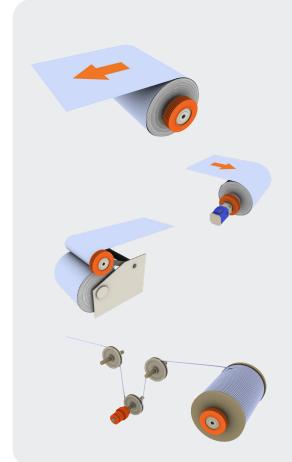
ELECTRICAL SUPPLY

In order to create the needed continuous magnetic field which will generate the torque, the coils of MEROBEL's EMP Brakes and Clutches have to be supplied with only DC current.

Since the coil resistance is a function of the device's internal temperature, it is strongly recommended to use MEROBEL's current regulated power supply to ensure the current constant.

AN INTRODUCTION TO TENSION CONTROL


Tension Control (Web, Foil, Fiber, Wire & Cable)


Principles & Solutions

As a well known supplier of EMP Brakes and Clutches for many years, MEROBEL gained vast field experience for unwind / rewind industrial applications for papers, foils, composites, wire and cable.

Utilising this experience, MEROBEL's engineering team developed a range of user friendly controllers that meet all the needs of unwind / rewind applications.

With the addition of the proper load cells and sensors, MEROBEL offers a complete tension control solution to many industries such as Converting, Printing, Wire & Cable, Packaging, etc.

TENSION CONTROL: A CRUCIAL ISSUE!

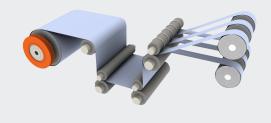
To control a web, cable, or wire all along an industrial process, requires the product to be kept "in tension" when going over each of the rolls to manage the product elongation and to keep it as constant as possible.

It's also a way to keep it aligned and to help the internal speed conrols at each stage of the machine.

Either for designing new equipement or for upgrading an old machine, the final success expected from the Tension Control system relies heavily on the analysis which leads to the right selection of the best components.

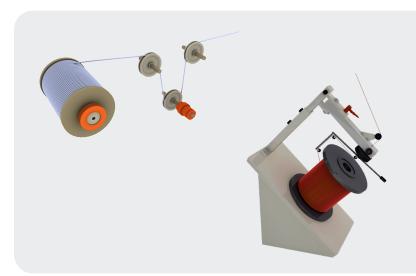
To help with this analysis, the following chapter introduces first the calculations to be made for sizing the Brakes and Clutches in the Tension Control environment; and second all the different regulation systems and specific functions available from MEROBEL's product range.

APPLICATIONS - INDUSTRIES



PRINTING, CONVERTING, LABELLING, PACKAGING INDUSTRIES...

MEROBEL's creative engineering team can help with the most challenging Web Tension Control Applications.


Whatever the application, an easy-to-use, easy-to-install and complete cost effective solution is offered.

The solution combines high quality, reilability, short delivery, and efficient technical support.

WIRE & CABLE INDUSTRIES

MEROBEL's EMP technology is the modern and cost effective solution for unwind stands, flyers, or wire tensioners, to ensure accurate tension control in the Wire & Cable industries.

TENSION CONTROL - CALCULATIONS & SIZING

REQUIRED PARAMETERS

Sizing optimization requiers preliminary calculations based on the following parameters:

Max Force	Fmax	[N]
Maximum force to be applied to the product	IIIax	

Max Speed V_{max} [m/s]
Maximum linear speed of the product

Looking for conversion factors, see p.

For highly dynamic applications, the following additional data must be also considered:

Roll weight	M[kg]
Acceleration time Time between no speed and full speed	t _a [s]
Deceleration time Time between full speed and no speed	t _d [s]

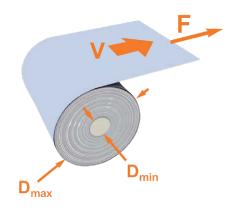
t [s]

E-Stop time
Minimum E-stop time requested

CALCULATION FORMULAS

TORQUE RANGE REQUESTED

Usual tension values: see data charts p.


$$T_{max}$$
 [Nm] = F_{max} . r_{max}
 T_{min} [Nm] = F_{min} . r_{min}
with $r = D / 2$

MAXIMUM POWER DISSIPATION

$$P_{\text{max}}[W] = F_{\text{max}} \cdot V_{\text{max}}$$

ROTATION SPEED RANGE REQUESTED

$$n_{max}$$
 [rpm] ~ 10 . V_{max}/r_{min}
 n_{min} [rpm] ~ 10 . V_{min}/r_{max}

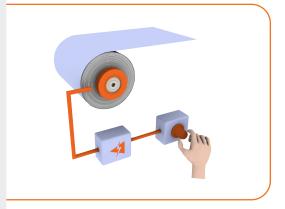
ROLL INERTIA

$$J_{\text{max}}$$
 [kg . m²] ~ 1/2 . M r_{max}^2

DYNAMIC TORQUE (Accel. / Decel.)

$$\begin{split} & \mathbf{T}_{\text{acc}} \left[\mathbf{Nm} \right] = - \, \mathbf{J}_{\text{max}} \, . \, \left(\boldsymbol{\omega}_{\text{j}} \, / \, \boldsymbol{t}_{\text{a}} \right) \\ & \mathbf{T}_{\text{dec}} \left[\mathbf{Nm} \right] = \mathbf{J}_{\text{max}} \, . \, \left(\boldsymbol{\omega}_{\text{j}} \, / \, \boldsymbol{t}_{\text{d}} \right) \\ & \mathbf{T}_{\text{e-s}} \left[\mathbf{Nm} \right] = \mathbf{J}_{\text{max}} \, . \, \left(\boldsymbol{\omega}_{\text{j}} \, / \, \boldsymbol{t}_{\text{e}} \right) \end{split}$$

with
$$\omega_{_{j}}$$
 [rd.s⁻¹] = $V_{_{max}}$ / $r_{_{max}}$


Principle

The machine operator manually adjusts the output torque of the brake through the current regulated power supply.

Since the roll diameter changes, the operator needs to constantly pay attention and periodically chagne the set point to minimize the variation in tension.

MANUAL CONTROL

Principle

Cost effective and user friendly, these open loop regulation systems are able to maintain a web tension accuracy of about 10%.

A sensor (Ultrasonic, Laser, or potentiometer) measures the diameter from the external surface of the roll.

The controller makes the calculation to provide the correct torque level according to the diameter, and keeps the tension constant throughout the unwinding process.

DIAMETER MEASUREMENT

CLOSED LOOP POSITION CONTROL (DANCER)

Principle

The closed loop solution:

The tension on the product is generated by the force applied to the dancer roll (fixed weight or variable pressure from a pneumatic cylinder).

A position sensor (potentiometer) measures the dancer roll position, and automatically adjusts the torque through a PID controller to keep the dancer arm position stable and constant.

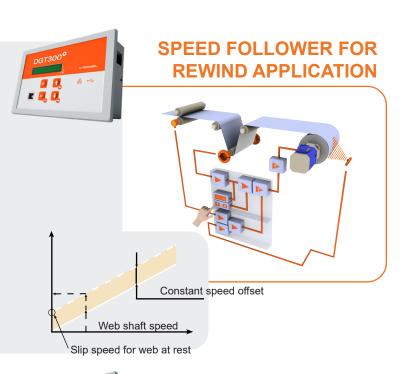
Principle

The ultimate closed loop solution:

The web tension is maintained by continuously monitoring the difference between the tension set point and the load cells measurement feedback.

The torque is automatically adjusted via a PID controller to keep the actual tension at the set point, even during acceleration and deceleration. By design, the actual tension applied to the material is available for display and / or record.

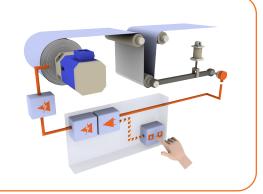
CLOSED LOOP FORCE CONTROL (LOAD CELLS)



Principle

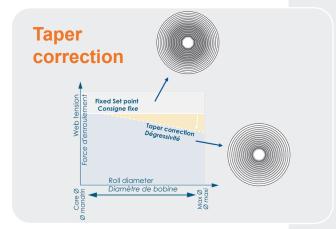
The state-of-the-art solution when rewinding applications cannot easily deal with a complex mix between torque control and speed control.

As an exclusive feature of MEROBEL's digital controllers, the speed follower takes the full benefit of the EMP technology's smoothness at high and low speed (even at rest), while minimizing the power dissipation required.


Principle

In addition to the direct control of EMP Brakes and Clutches, MEROBEL's controller design includes a special feature allowing the regulation of external motor drives.

This feature allows the users to benefit from the sophisticated MEROBEL controller's "web tension functions", even when using motors and drives.


MOTOR & DRIVE

TENSION CONTROL: ADDITIONAL FUNCTIONS

Non-stop turret unwinder

Many years of experience made MEROBEL capable of resolving the most demanding Tension Control applications.

The built in functions offered provide complete technical solutions to all specific needs in applications such as Converting, Narrow web, Wire & Cable, etc

Taper correction

A specific feature that avoids over tension at the center of the roll, by automatically adjusting the set point, as a function of the actual roll diameter.

Non-stop turret unwinder

The controller manages the empty / full web automatic rotation process, switching the regulation from one roll to the other, and maintaining a preset torque on the empty roll.

Variable PID

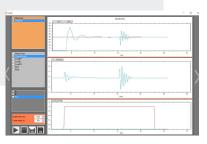
When the diameter range is very high, this feature automatically adjusts the PID coefficients, according to the actual roll diameter, in order to avoid web tension instability when approaching the core diameter.

Principle

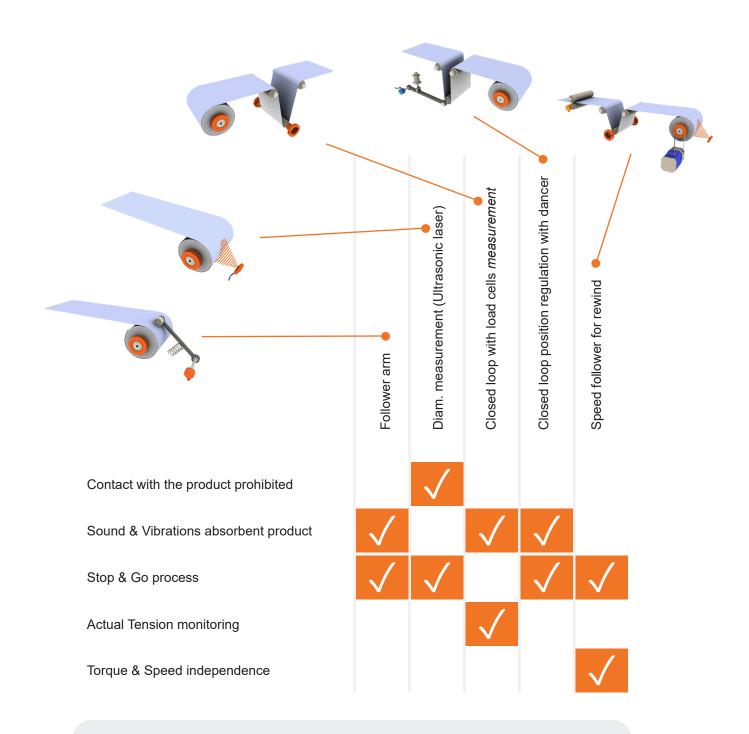
CREEL

Developed for multi axis applications, the compact DG BLOCK controller offers a daisy chain mounting simplifying the wiring and the process with the backside connectors dispatching power supply & common process data.

Each axial is individually controlled in closed loop.


SOFTWARE

Software


Tension control commissioning is getting easy with the very intuitive and and user friendly programming system. Preset parameters are available to suit all the application types.

Scope function included in the software simplifies greatly the setting up and offers the data logging functions for quality management.

SELECTING THE CORRECT REGULATION SYSTEM

- Question to ask?
- > Advice needed?

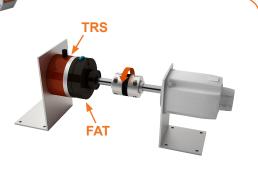
MEROBEL engineering team is available to help select the best solution to your specific application. Please consult info@redex-group.com

TORQUE CONTROL - REGULATION

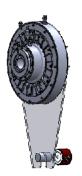
Principle

TEST-BENCHES

Torque control is often used in motor drive configuration. This part is treated in tension control chapter page 23.


Torque control in this chapter is referring to test bench applications with load simulation for motors or actuators like gearboxes, steering systems...

This type of torque control is necessary at the different stages of a product development for characterization validation, endurance testing or production quality management


With reproducible and accurate torque, fast response time, easy remote control with low power consumption, EMP brake is offering a modern and cost effective solution.

In association with TRS static torque sensor for direct torque measurement, simple to sophisticated solution can be built: manual control with a power supply or closed loop control following duty cycle with DGT300+ or DG-block controller.

Dynamics torque sensor can also be used in combination with both controllers.

For high torque application (above 200Nm), measurement is done with a moment arm and wat+ load cell.

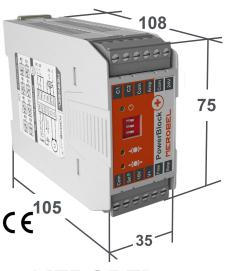
- Compact & Cost Effective Design
- > Suitable for a wide range of coils
- > Accurate current output control

The most comprehensive range of **CURRENT REGULATED** Power Supplies, based on micro controller technology.

POWERBLOCK2 +

The universal solution, suitable to the majority of MEROBEL's EMP Brakes and Clutches range

POWERBLOCK4 +

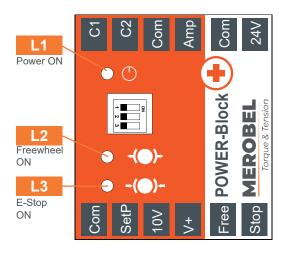

DIMENSIONS

The higher level of output current. Suitable for special coils, or use of devices wired in parallel mode, or other Brake technologies with low impedance coil (i.e. Hysteresis).

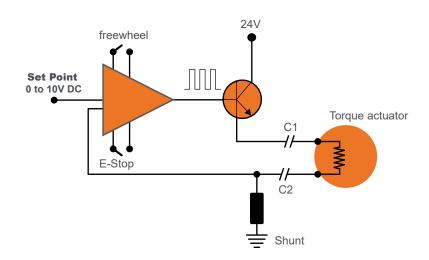
POWERBLOCK04 +

Ideal for higher remote control accuracy of Merobel's smallest sizes EMP Brakes and Clutches or other Brake technologies with high impedance coil (i.e. Hysteresis).

TECHNICAL FEATURES

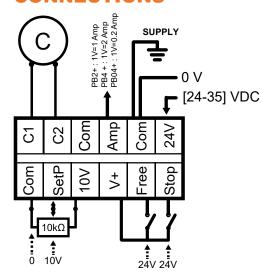


		Pb2+	Pb4+	Pb04+
Part number	#	ME134723-00	ME134826-00	ME134829-00
Power supply	[V DC]	$24 \rightarrow 35$	$24 \rightarrow 30$	$24 \rightarrow 35$
Max power consumption	[VA]	70	120	20
Output load resistance	[ohm]	$5 \rightarrow 60$	$1 \rightarrow 10$	$20 \rightarrow 400$
Output max current	[A]	2	4	0.4
Remote Setpoint	[V DC]	$0 \rightarrow 10$	$0 \rightarrow 10$	$0 \rightarrow 10$
Ambient temperature	[°C]	+10 +40	+10 +40	+10 +40
Weight	g	120	120	120


Regulated Power Supplies

SETTINGS

PRINCIPLE


MAX. OUTPUT CURRENT ADJUSTMENT

РВ	32+	PB	34+	РВ	04+
0N 1 2 3 0.25A	0N 1 2 3 0.50A	0N 1 2 3 0.50A	ON 1 2 3 1.00A	0N 1 2 3 0.05A	0.10A
0.75A	1.00A	ON 1 2 3 1.50A	ON 1 2 3 2.00A	ON 1 2 3 0.15A	0.20A
ON 1 2 3 1.25A	0N 1 2 3 1.50A	ON 1 2 3 2.50A	3.00A	ON 1 2 3 0.25A	0.30A
1.75A	2.00A	ON 1 2 3 3 3.50A	ON 1 2 3 4.00A	0N 1 2 3 0.35A	0.40A

Adjust the max current output following the DIP switches position.

E-Stop value is referring to the max current value set with the DIP switches.

CONNECTIONS

C1 / C2	Brake or Clutch Power Supply (C)
Com	0 V
Amp	Real time current equivalent voltage
0 V	Equipotential supply point
24 V	24 V Supply
SetP	Set point input (0 \rightarrow 10 V DC)
10V	Set point potentiometer supply (10k Ω)
V+	Logic inputs voltage remote control
Free	Logic input "Freewheel" mode (0 Amp)
Stop	Logic input "E-Stop" mode (Max current)* *(max current with DIP switches)

Universal Amplifier

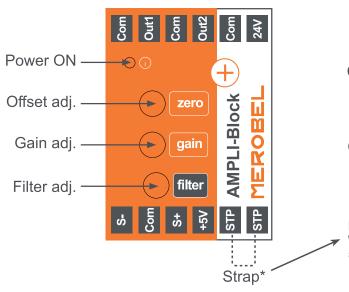
- > Wide range of Amplification
- > Direct & filtered outputs
- > Suitable for foil & semi conductor gauges load cells

AMPLI-Block+, the universal **precision signal amplifier** is designed for simple set up for the use with one or two cells, either half or full bridge.

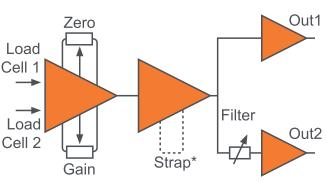
AMPLI-Block

- > The universal solution, suitable for one or two load cells.
- > Simple set up with zero & gain adjustment (gain x20 to x10000)
- > Two levels of gain range to cover any type of transducers
- > Direct output signal for fast response time application (motor control)
- > Filter output signal for noise canceling

DIMENSIONS


TECHNICAL FEATURES

Part number	#	ME135691-00
Power supply	[V DC]	24 (20 → 35)
Max power consumption	[VA]	3
Strain gauges bridge supply	[V DC]	5
Output voltage	[V DC]	0 → 10
Current (Output voltage)	[mA]	< 5
Zero compensation		±50% of FS
Ambient temperature	[°C]	0 → + 40
Weight	g	120


Universal Amplifier

SETTINGS

PRINCIPLE

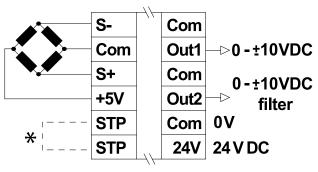
→ High gain for typical 2mV/V signal and lower No strap With strap → Low gain for semi conductor gauges typical 50mV/V and higher

CALIBRATION PROCEDURE

No load: set 0v with zero adjustment

Simulate max load by hanging a weight on a string following the product path. Set 10v with gain pot adjustment.

Remove load (totally free) and reset 0v with zero pot adjusmtent.



Calibration is done.

Check that voltage follows the weight variation.
It is possible that you need one extra setting to ensure accurate measurement.

CONNECTIONS

Full bridge gauges

Out1	Direct output signal Ua (0 → ±10V)
Out2	Output signal filtered Ub (0 \rightarrow ±10V)
Com	0 V / Merobel equipotential supply point
24V	Supply: 24 V DC
S-	Signal sensor -
S+	Signal sensor +
+5V	Supply sensor(s)
STP	*Strap for gain selection

- > Compact and complete solution
- > Easy set up with software interface
- Multi spindles design

DG-Block is the new benchmark in closed loop **digital controller** for any industries using equipment managing a large number of wires, cables, fibers or narrow webs.

DG-Block

DG-Block is a true turnkey solution relying on a very intuitive programming system, the user friendly computer software (DG-BlockSoft).

Each block are designed to make torque & tension control solution with universal amplifier – advanced regulation – brake power supply & analogue drive output

Shared process instructions from one leader device to several follower devices, without any extra wiring.

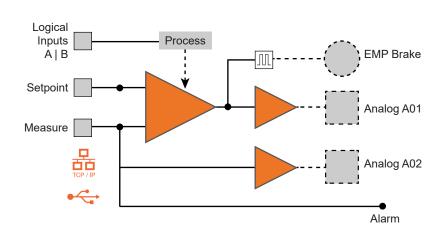
DIMENSIONS

ADVANCED FEATURES OF REGULATION

- > Built-in **precision amplifier** for 1 or 2 load cells
- > P.I.D **regulation** algorithm
- > Open + closed loop modes included
- > Direct power supply for e-brake
- > Very easy set-up with the PC software (Windows)
- > Automation communication : MODBUS TCP/IP
- > Specifically designed for Mutli spindle application

TECHNICAL FEATURES

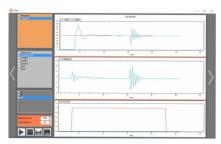
Part number	#	ME134330-00
Power supply	[V DC]	$24 \rightarrow 35$
Max power consumption	[VA]	70
Input measure	[V DC]	$1~\text{mV} \rightarrow 10~\text{V}$
Input set point	[V DC]	0 → 10
Input logics	[V DC]	5 → 24
Output A01 & A02	[V DC]	-10 → +10
Output C1-C2 max current	[A]	1.5
Ambient temperature	[°C]	0 → 40
Weight	g	150


Digital Controller

SETTINGS

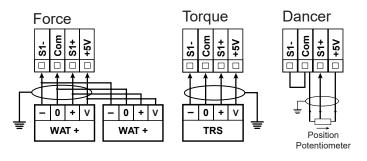
1EROBEL \bigcirc Green = Power ON **Backside** 6666 Blue = Leader Mode connector Orange = Regul ON Auto Power Supply Tare ○ → nn Tare **DG** block Setpoint - USB Port Process control RJ45 TCP/IP

PRINCIPLE



SOFTWARE

Simple interface with all parameters setting displayed on a unique window


Scope function for easy data readout

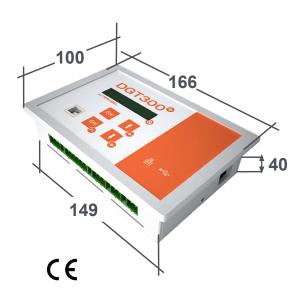
All parameters can also be adressed by modbus TCP/IP with external PLC or HMI.

CONNECTIONS

Com	0 V
Strap	Strap to COM to enable leader mode
Set-P	Set point (0-10V or Pot.)
+10V	10V supply
S1-/S1+	Signal (-) / Signal (+)
+5V	Sensor supply
+24V	+24V DC - main supply
C1	Power output direct supply1
C2	Power output direct supply2
AL-	Output logic reference
AL1	Logic output1
Α	Logic input 1
В	Logic input 2
AO1	Analog output 1 (-10 → +10V)
AO2	Measure readout (-10 → +10V)

- > All in one solution for web tension & torque control
- > Dedicated configurations for brakes & motors drive
- Enable Set up with its software interface

DGT300+ is the **Swiss knife controller** able to offer solutions from simple open loop to the most sophisticated control combining speed & torque control.



DGT300+

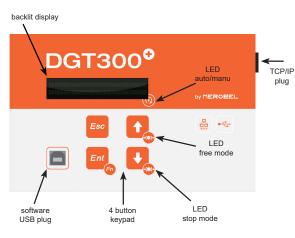
DGT 300+ is the most attractive turnkey solution on the market for closed-loop / open loop applications used in tension control solutions for winding, unwinding, and intermediate tension control.

DGT 300+ controller is also compatible with demanding torque control solution for test bench applications.

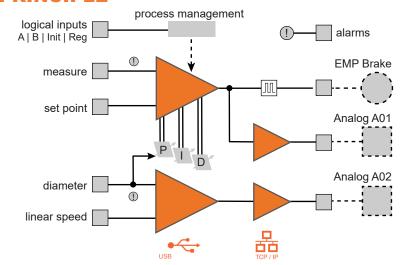
DIMENSIONS

ADVANCED FEATURES OF REGULATION

- > Built-in **precision amplifier** for 1 or 2 load cells
- > Automatic variable P.I.D **regulation** function
- > Open + closed loop + speed calculation mode
- > Direct power supply for e-brake
- > Very easy set-up with the PC software (Windows)
- > Automation communication: MODBUS TC/IP
- > Dedicated web tension functions : taper, inertia compensation, no stop...

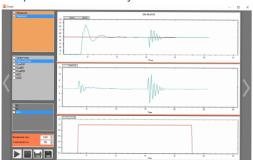

TECHNICAL FEATURES

00
V
)

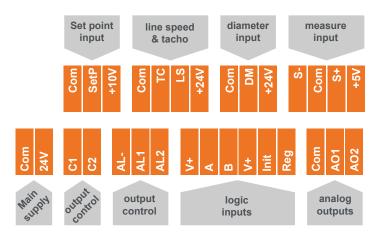

HMI Digital Controller

SETTINGS

PRINCIPLE



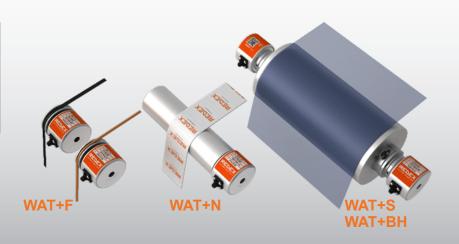
SOFTWARE


Simple interface with all parameters setting displayed on a unique window

Scope function for easy data readout

Also fully configurable by TCP/IP communication or from panel keypad & display.

CONNECTIONS

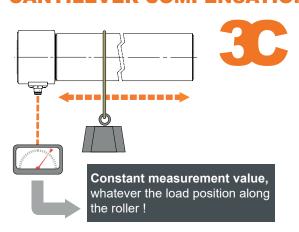

Com	0 V
SetP	Set point (0-10V or Pot.)
+5V/+10V/+24V	Internal supplies
TC	Tacho input (0-10V)
LS	Encoder input (5→24V PNP/ NPN)
DM	Diameter input
S- / S+	Signal (-) / Signal (+)
24V	24V DC - main supply
C1/C2	Power output direct supply
AL-	Output logic reference
AL1/2	Alarm outputs
V+	24V logic supply
A/B	Logic process inputs
Init/Reg	Logic regulation calculation input
AO1/AO2	Analog outputs (-10 → +10V)

Precision Load Cells

- > Highly modular
- > Highly accurate
- Cost saving by design

For any type of applications

Web & Wire Accurate Tension


WAT+ concept enables a comprehensive range of force transducers and accessories, especially designed for dynamic tension measurement of fibers, wires and web.

WAT+ perfectly suits any technically demanding applications in various high-tech industries such as, composites, wire and cable, textiles, as well as packaging, labelling & finishing equipments.

TRANSDUCERS

SIZE 1		Ref
WAT+5	Full scale 50N	ME134810-00
WAT+25	Full scale 250N	ME134802-00
WAT+50	Full scale 500N	ME134890-00
SIZE 2		Ref
WAT+100	Full scale 1000N	ME135524-00
WAT+250	Full scale 2500N	ME135525-00
WAT+500	Full scale 5000N	ME135526-00

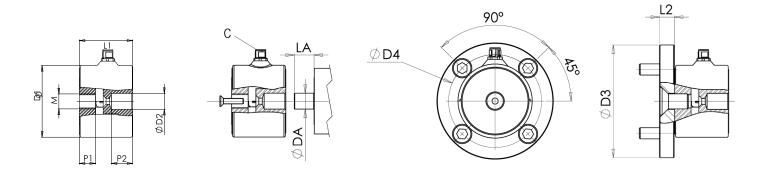
CANTILEVER COMPENSATION

ACCESSORIES

ACC-F	Pulley mounting shaft	Size1
ACC-S	Live shaft mounting	Size1 & 2
ACC-BH	Dead shaft mounting	Size1
ACC-N100	Roller Ø 50 - L 100mm	Size1
ACC-N200	Roller Ø 50 & 70 - L 200mm	Size1 & 2
ACC-N300	Roller Ø 50 - L 300mm	Size1
FLANGE	Rear side mounting flange*	Size1 & 2

Tailored solution with WAT+ concept:

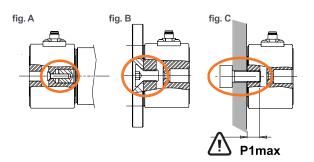
Precision Load Cells


TECHNICAL FEATURES

			SIZE 1			SIZE 2		
Transducer		WAT+5	WAT+25	WAT+50	WAT+100	WAT+250	WAT+500	
Reference		ME134810-00	ME134802-00	ME134890-00	ME135524-00	ME135525-00	ME135526-00	
Load rating (FS)	N	50	250	500	1000	2500	5000	
Safe Load limit	%FS		500			300		
Resistance	Ω		350		350			
Supply Voltage	V		5 → 10		5 → 10			
Sensivity	mV/V		~1.6		~2			
Accuracy Class	%FS		0.3			0.3		
Working Temp	°C		10 → 60			10 → 60		
Weight	g		200			460		

Included connector + shielded cable 5m length

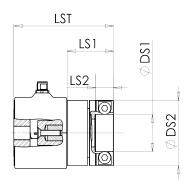
DIMENSIONS I LOAD CELLS

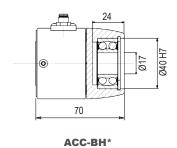

	D1	D2	L1	M	P1	P2	С	DA	LA	D3	D4	L2
SIZE 1	56	12H8	40	M10	11	17	M8	12h6	16	90	75	10
SIZE 2	76.5	17H8	57.5	M16	17.5	23	M12	17h6	21	120	96	16

WAT+ ACCESSORY SHAFT FLANGE

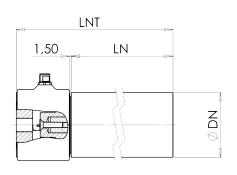
ASSEMBLY PRECAUTIONS FOR MOUNTING

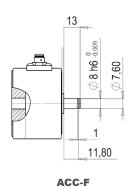
	Size	fig.A	fig.B	fig.C
Screw type	Size 1	FHc M4*16	FHc M10*13	M10
(class 8,8)	Size 2	FHc M6*25	FHc M16*30	M16
Tightening torque	Size 1	1.5Nm	25Nm	25Nm
max value	Size 2	5Nm	105Nm	105Nm




DIMENSIONS I ACCESSORIES

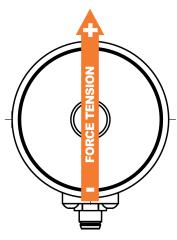
	DS1	DS2	LS1	LS2	LST
SIZE 1	25H8	50	42.4	13.5	82.4
SIZE 2	40H8	72	54	19	111.5


DN	LN	LNT
49.5	100 - 200 - 300	41.5 + LN
69.5	200	59 + LN


ACC-S

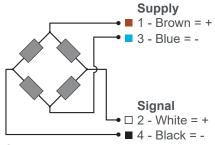
*Keep an axial play to ensure thermal expansion of the dead shaft.

ACC-N


SIZE 1							
Accessory	FLANGE 1	ACC-S	ACC-N100	ACC-N200	ACC-N300	ACC-F	ACC-BH
Reference	ME134812-00	ME134811-00	ME134813-00	ME134808-00	ME134814-00	ME134803-00	ME134895-00

	S	IZE 2	
Accessory	FLANGE 2	ACC2-S	ACC2-N200
Reference	ME135837-00	ME135835-00	ME135836-00

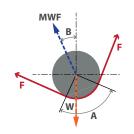
Precision Load Cells



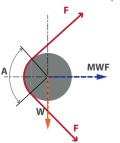
LOAD DIRECTION

The load direction has to be oriented following the resultant direction.

WIRING

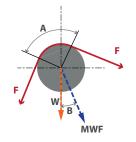

Connector

Size 1: M8 - IEC 61076-2-104 A-Standard **Size 2**: M12 - IEC 61076-2-101 A-Standard


WAT+ is supplied with connector and a five meters shielded cable.

CALCULATIONS

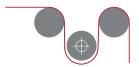
MWF = 3*.F.Sin(A/2)



 $\mbox{WMF} = \mbox{Max Working Force on load cell}(s)_{-}$ For 2 load cells, the MWF must be divided by 2 to size each load cell

W = Roll / pulley weight

F = Max tension (on the product)


MWF = 3*.F.Sin(A/2) + W.Cos(B)

*safety factor 1.5 included

CALIBRATION PRINCIPLES

1 - Release any tension on the product and set the zero offset.

2 - Apply a known tension and set the value to adjust the gain factor.

IN ASSOCIATION WITH

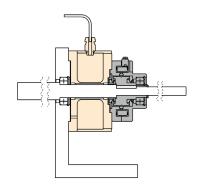
3 - Release again any tension on the product and check again the zero value.

39

MEROBEL

- > Compact and robust design
- > High torque measurement accuracy
- > Easy calibration solution with shunt resistor

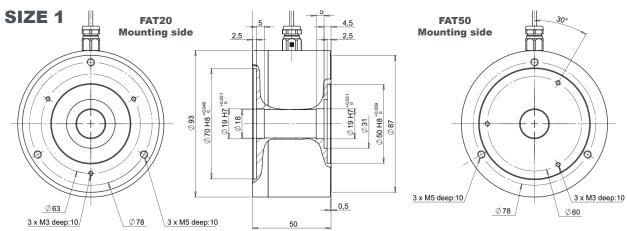
TRS Series offer a plug and play solution for tests benches, providing an accurate torque feedback allowing a more accurate & stable regulation



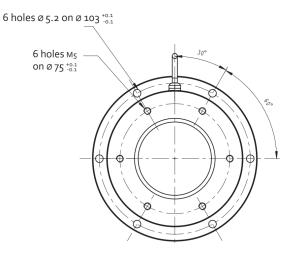
TRS is a robust and economical solution compared to dynamic torque sensor.

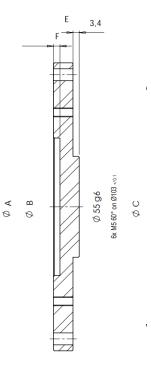
Together with MEROBEL brakes and controller, it offers a simple and compact package solution for accurate load simulation.

- Direct mounting for FAT20 FAT50 (size1) & FAT120 (size2)
- Mounting with flanges adaptors for other brakes sizes
- 2m shielded cable


Assembly principle

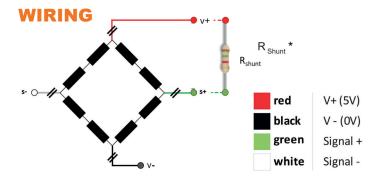
TECHNICAL FEATURES


		SIZE 1		SIZE 2	
Transducer		TRS5	TRS50	TRS100	TRS200
Part number	#	ME134554-00	ME332450-00	ME332451-00	M332452-00
Nominal Torque Range [FS]	[Nm]	5	50	100	200
Supply Voltage	[V DC]	5 → 10	5 → 10	5 → 10	5 → 10
Safe load limit	[%FS]	200	200	200	150
Accuracy	[%FS]	±0.2	±0.2	±0.2	±0.2
Sensitivity	[mV/V]	0.5	0.5	0.5	0.5
Bridge resistance	[Ω]	350	700	700	700
Temperature range	[°C]	0→ 80	0→ 80	0→ 80	0→ 80
Weight	g	410	460	460	460



DIMENSIONS

SIZE 2



SIZE 2 ADAPTER PLATE

Brake side

Frame side

Brake type	Adapter plate #	ØA	ØB	ØC	Е	F
350	ME360100-02	135.3±0.1	55 g6	6x ø5.5 on 122±0.1	13±0.1	2±0.1
650	ME360100-03	157±0.1	75 g6	6x ø6.5 on 144±0.1	14±0.1	3.5±0.1
1200	ME360100-04	251±0.1	214 g5	8x øM7 on 233±0.1	22±0.1	6±0.1
2002	ME360100-05	278±0.1	230 g7	6x øM7 on 263±0.1	23±0.1	9.5±0.1

* Note

- 1- Shunt resistor can be used for torque calibration simulation.
- 2- Torque equivalent value simulated by shunt is written on the product label.
- 3- Ask for dedicated documentation with MEROBEL controller DGT300+ or DG-Block

MOUNTING & MAINTENANCE

MOUNTING

Installation must be made carefully to avoid damage to the bearings.

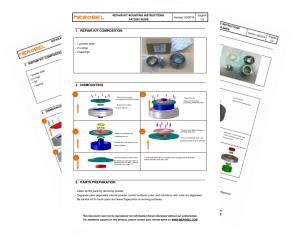
The shaft should be lubricated upon assembly, to prevent seizing.

The ball bearing assembly has been designed to support only the weight of MEROBEL's EMP devices.

Significant external forces (i.e.: radial load on the shaft) have to be supported by an additional mechanical assembly (ball bearings and / or flexible couplings).

MAINTENANCE - AFTER SALES

MEROBEL offers a worldwide network of trained specialists able to refurbish the devices.


It is therefore highly recommended to return the EMP Brakes and Clutches, to MEROBEL, or one of their partners for repair.

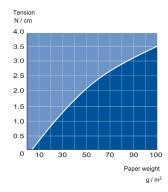
After detailed analysis, a complete quotation is provided prior to any action.

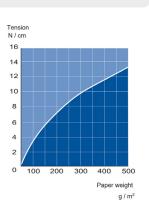
Once the customer approves the quotation, the device is refurbished and 100% tested to guarantee that it will provide all its original performance characteristics.

If it is impossible to return the device to MEROBEL or one of its after sales partners, repair Kits are available allowing customers to facilitate a temporary repair.

To purchase the repair Kits delivered with user manuals, please consult your local supplier.

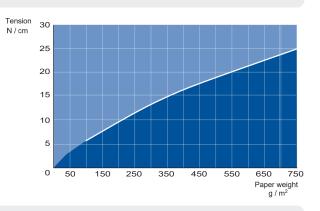
APPLICATION SHEET - WEB TENSION CONTROL


CONTACT INF	FORMATION						
Company				Name _			
Adress							
ZIP Code		Phone		7	Title		
E-mail				_ Fax			
APPLICATION	I						
Unwind Re		rizontal Shaft Vertical Shaft Other please add a sketch)	1	Direct D Shat			allel Shaft lounting
PROJECT DE	SCRIPTION						
Operating hours/day Ambient temperature Material(s) Thickness		Speed Core Diameter Max Roll Diameter Roll Weight Web Width Tension Force Acceleration Time Deceleration Time Emergency Stop T		Unit	Min	Nominal	Max
REGULATION	SYSTEM						
Manual Control Present Future	Oper Follower Arm	Diam. measure		Closed Leedback	oop Dancer □	Speed 1	
COMMERCIA	L DATA						
Machine type			ntity (1st t				
Schedule		Qua	ntity / yea	r			


TENSION CHARTS

PAPER

g/m²	N/cm	PLI
10	0.33	0.19
20	0.79	0.45
30	1.25	0.71
40	1.65	0.94
50	2.05	1.17
60	2.38	1.36
70	2.64	1.51
80	2.98	1.70
90	3.23	1.84
100	3.47	1.98



g/m²	N/cm	PLI
100	3.47	1.98
200	6.52	3.72
300	9.44	5.39
400	11.6	6.62
500	13.6	7.76

CORRUGATED

g/m²	N/cm	PLI	g/m²	N/cm	PLI
100	2.3	3.0	450	17.6	10.0
150	7.0	4.0	500	19.0	10.8
200	8.8	5.0	550	20.2	11.5
250	11.1	6.3	600	21.5	12.3
300	12.9	7.4	650	22.6	12.9
350	15.0	8.6	700	23.6	13.5
400	16.1	9.2	750	25.0	14.3

OTHER MATERIALS

Type of material	N / µm / cm	lbs / in or web width		
Acetate	0.035	0.5 /mil		
Aluminium	0.035 - 0.105	0.5 - 1.45 /mil		
Cellophane	0.042	0.6 /mil		
Nylon	0.015 - 0.02	0.2 - 0.3 /mil		
Mylar	0.035 - 0.07	0.5 - 1.0 /mil		
Polyethylene	0.01 - 0.02	0.15 - 0.3 /mil		
Polypropylene	0.015 - 0.025	0.20 - 0.35 /mil	For laminated, coated product, add 0.2 N/cm	
Polystyrene	0.06 - 0.08	0.85 - 1.15 /mil		
Vinyl	0.0035 - 0.014	0.05 - 0.2 /mil		

APPLICATION SHEET - WIRE & CABLE TENSION CONTROL

CONTACT INFORM	ATION			
Company		Name		
Adress				
ZIP Code	Phone	Title _		
E-mail		Fax		
APPLICATION				
Unwind Rewind	Horizontal Shaft	Direct Drive	Parallel Shaft	
	Vertical Shaft	Shaft		
	Other [] (please add a sketch)			
PROJECT DESCRIP	PTION			
Operating hours/day Ambient temperature Material(s) Breaking	Speed (continuous Core Diameter Max Roll Diameter Roll Weight Web Width Tension Force Acceleration Time Deceleration Time Emergency Stop Ti		in Nominal Max	
REGULATION SYST	ГЕМ			
Manual Control Follo Present Future	Open Loop wer Arm Diam. measure	Closed Loop Force Feedback Dan	Special cer Speed follower	
COMMERCIAL DAT	Α			
Machine type		ntity (1st time)		
Schedule	Qua	ntity / year		

APPLICATION SHEET - TEST BENCHES & TORQUE CONTROL

CONTACT INFORM	ATION					
Company			Name			
Adress						
				T'41 .		
ZIP Code	Phone			litle		
E-mail			Fax .			
APPLICATION						
Brake	Clutch	Torque Limiter			Horizontal	Shaft [
					Vertical	Shaft [
				Othe	er (please add a	sketch)
PROJECT DESCRI	PTION					
			Unit	Min	Nominal	Max
Torque						
Rotation Speed						
Acceleration						
Deceleration						
E-Stop						
Ambient temperature						
Intermittent duty cycle? Please complete the graphs	paods		Torque			
	0	Time	0			Time
REGULATION SYS	ГЕМ					
Manual Contro	Force or To	rque Feedback				
Present						
Future	[
COMMERCIAL DAT	Ά					
Machine type		Quantity (1st tin	ne)			
Schedule		Quantity / year				

NOTES

> REDEX SAS

1 rue Paul Defontenay, 45210 Ferrières-en-Gâtinais – France T. (+33) 2 38 94 42 00

> REDEX USA

1705 Valley Road, Ocean Twonship, New Jersey 07712 – USA T. (+1) 732-493-2812

> REDEX Italy

Via Ponchielli, 6, 20063 – Cernusco sul Naviglio (Mi) – Italy T. (+39) 029 217 091

> ANDANTEX Ltd

Unit 3b Lythalls Lane Industrial Estate, Lythalls Lane Conventry, CV6 6FL – United Kingdom T. (+44) 02476 307722

> REDEX India

Suite 149 - Unit No 203, SBR CV Tower, Sector-1. Huda Techno Enclave, Madhapur, Hyderabad 500081 - India T. (+91) 9440262452

> REDEX China

Block 5, No. 388, Sandbang Road, Songjiang District, Shanghai 201611 – China T. (+86) 21 64 48 06 36 - 8001

www.redex-group.com

